Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Tissue Engineering and Regenerative Medicine ; (6): 73-82, 2022.
Article in English | WPRIM | ID: wpr-919381

ABSTRACT

BACKGROUND@#Today’s treatment options for renal diseases fall behind the need, as the number of patients has increased considerably over the last few decades. Tissue engineering (TE) is one avenue which may provide a new approach for renal disease treatment. This involves creating a niche where seeded cells can function in an intended way. One approach to TE is combining natural extracellular matrix proteins with synthetic polymers, which has been shown to have many positives, yet a little is understood in kidney. Herein, we investigate the incorporation of laminin into polycaprolactone electrospun scaffolds.METHOD: The scaffolds were enriched with laminin via either direct blending with polymer solution or in a form of emulsion with a surfactant. Renal epithelial cells (RC-124) were cultured on scaffolds up to 21 days. @*RESULTS@#Mechanical characterization demonstrated that the addition of the protein changed Young’s modulus of polymeric fibres. Cell viability and DNA quantification tests revealed the capability of the scaffolds to maintain cell survival up to 3 weeks in culture. Gene expression analysis indicated healthy cells via three key markers. @*CONCLUSION@#Our results show the importance of hybrid scaffolds for kidney tissue engineering.

2.
Tissue Engineering and Regenerative Medicine ; (6): 301-310, 2018.
Article in English | WPRIM | ID: wpr-715000

ABSTRACT

Chronic kidney disease is a major global health problem affecting millions of people; kidney tissue engineering provides an opportunity to better understand this disease, and has the capacity to provide a cure. Two-dimensional cell culture and decellularised tissue have been the main focus of this research thus far, but despite promising results these methods are not without their shortcomings. Polymer fabrication techniques such as electrospinning have the potential to provide a non-woven path for kidney tissue engineering. In this experiment we isolated rat primary kidney cells which were seeded on electrospun poly(lactic acid) scaffolds. Our results showed that the scaffolds were capable of sustaining a multipopulation of kidney cells, determined by the presence of: aquaporin-1 (proximal tubules), aquaporin-2 (collecting ducts), synaptopodin (glomerular epithelia) and von Willebrand factor (glomerular endothelia cells), viability of cells appeared to be unaffected by fibre diameter. The ability of electrospun polymer scaffold to act as a conveyor for kidney cells makes them an ideal candidate within kidney tissue engineering; the non-woven path provides benefits over decellularised tissue by offering a high morphological control as well as providing superior mechanical properties with degradation over a tuneable time frame.


Subject(s)
Animals , Rats , Aquaporin 2 , Cell Culture Techniques , Global Health , Kidney , Polymers , Renal Insufficiency, Chronic , Tissue Engineering , von Willebrand Factor
SELECTION OF CITATIONS
SEARCH DETAIL